

DAQ SilverX 系列, 16Bit, up to 16 AI, 800KS/s, 2 AO, 24 DIO

广州市方瞳科技有限责任公司 | Finetooling Technology (Guangzhou) Co.,Ltd. Web: www.finetooling.com Tel: 0086-20-82108945

历史记录

版本	日期	内容
1.0	2023/3/30	首次发布
1.2	2024/4/28	修订技术参数的排版,更便于用户选型,另外加入了驱动安装指导等内容

目录

产品特性	1
概述	1
SilverX 系列采集卡对照表:	1
模拟输入特性	2
模拟输出特性	2
数字 IO/PFI	
Tips: 数字 IO 直接驱动感性负载注意事项	3
Tips: 提升数字 IO 的电流驱动能力	4
计数/定时器	4
电源供电	5
接口定义	
关于 Windows 驱动安装及其 HWSuit 支持	8
Windows 驱动安装 [。]	0 9
HWSUIT 功能简介	10
技术支持 Technical Support	.12

产品特性

- 16 通道模拟输入, 16bits 分辨率, 最大采样率 800KS/s
- 可编程模拟输入量程: ±10V, ±5V
- 部分产品 AI 可配置为伪差分输入
- 2 通道模拟输出, 16bits 分辨率, 最大采样率为 1.2MS/s
- 24 通道双向数字 IO, 可按 Bit/Port 设置为输入输出
- 2通道定时/计数器
- 免费的调试助手软件(HWSUIT)
- 支持 FTStudio、LabVIEW、Visual Studio 等工具进行应用开发

概述

USB DAQ SilverX 系列提供最多 16 通道单端模拟输入、8 通道差分模拟输入、16Bit 采样率、最大 800KS/s、24 位 DIO 等功能,且部分通道间可实现同步采样,可满足许多常见的测量要求。该设备适用于各种工业应用,如实验室 自动化、研究和设计验证等。免费的 FineTooling HWSUIT 配套软件提供了基本的测量和分析功能,如 SNR、THD、SINAD 等分析,而方瞳的自动化测试平台 FTStudio 支持所有 USB DAQ SilverX 系列的数据采集卡,方便用户快速 使用。

系统支持: windows XP / Win7 / Win10 / Win11 / Linux

软件兼容: LabVIEW / Visual Studio / FTStudio 等

SilverX 系列采集卡对照表:

系列	通信接口	AI 通道数	AI 分辨率	AI 采样率	AO 通道	AO 分辨率	AO 量程	DIO
FT8203	USB	16	16 bits	800KS/S	2	16 bits	±10V	24
FT8204	USB	8	16 bits	800KS/S	2	16 bits	±10V	24
FT8205	USB	16	16 bits	800KS/S	2	16 bits	±10V	24
FT8206	USB,GbE,FIDAS	16	16 bits	800KS/S	2	16 bits	±10V	24

模拟输入特性

下面所有的测量结果都是在室温 25℃下测量,除非有特别说明。

模拟输入指标	FT8203	FT8204	FT8205	FT8206		
模拟输入通道数	16 通道单端	8 通道差分	8 通道差分/	16 通道单端		
采样率	AI0-16 共享 800KS/s	AI0-7 共享 800KS/s	Al0~7, 8~15, 16- 共享 800KS/s	~23 组内部独立		
分辨率	16 bits					
DNL	±1LSB					
INL	±1LSB					
AI SENSE	无	无	无	AI SENSE 0 / 1		
Input Signal 1KHz, DIFF; 800KSPS, 8K Sam	ples:					
SNR (20Vpp)	>92dB					
SINAD (2Vpp)	>93dB					
THD (2Vpp)	<0.002%					
定时分辨率	50ns					
输入耦合	DC	$\langle A \rangle$				
输入量程	±10V, ±5V					
输入阻抗	X					
AI+ to AIGND	>10GΩ 6.4pF					
AI- to AIGND	>10GΩ 6.4pF					
输入偏置电流	±20pA					
采样点缓存 FIFO 大小	8192 samples					
多通道扫描缓存大小	8192 samples					

模拟输出特性

下面所有的测量结果都是在室温 25℃下测量,除非有特别说明。

模拟输出指标	参数				
通道数	2通道, 单端输出				
ADC 分辨率	16 bits				
SNR(Signal : 20Vpp, 1KHz)	>100dB				
SINAD(Signal : 10Vpp, 1KHz)	>83dB				
THD(Signal : 10Vpp, 1KHz)	<0.008%				

SilverX Series DAQ User Manual | $\ensuremath{\mathbb{C}}$ FineTooling Tech

DNL	±1LSB
数据更新速率	1.2MS/s/CH
定时分辨率	50ns
输出耦合	DC
输出量程	±10V
输出阻抗	0.2Ω
输入偏置电流	±20pA
AO 输出数据缓存	1024 samples
压摆率	20V/uS
最大驱动电流	10mA

数字 IO/PFI

下面所有的测量结果都是在室温 25℃下测量,除非有特别说明。

数字 IO/PFI 指标	参数		
通道数	24Bits DIO, 2Bits PFI(P0.0/P0.1)		
参考地	DGND		
方向控制	每个位可以单独设置为输入输出		
输入电压范围	0~3.3V		
输入高电平	2.2V~3.3V		
输入低电平	<0.7V		
输出高电平	>3.2V		
输出低电平	<0.1V		
最大驱动电流	4mA		
上电初始状态	输入		
定时器分辨率	20ns		
PFI	可以输出占空比可调节的方波		

Tips: 数字 IO 直接驱动感性负载注意事项

当感性负载连接至输出线时,由于感性负载(例如较大继电器的驱动线圈)会存储一定的能量,在打开或闭合的瞬间可能产生一个较大的反向电动势,该反电动势有可能会损坏或者减少控制电路的寿命。为了避免这种情况,可以 采用反激式二极管。下面是一个使用反激式二极管保护感性负载的一个范例。

图 5-1 限制感性负载的反电动势

Tips: 提升数字 IO 的电流驱动能力

为了方便用户进行灵活进行工程设计, DAQ 的数字 IO 可以被任意设置为输入/输出。因此, 为了不影响数字输入特性, 我们尽可能减少了外围的驱动电路。在这种情况, 当某些特定的项目应用, 用户可能会需要这些数字 IO 作为特定的输出, 具有较强的对外电流驱动能力, 这种情况, 用户可以在外围的接口板上增加响应的驱动电路。例如, 用户可以通过增加三极管或者 MOSFET 来增加驱动能力, 也可以直接通过如 ULN2803 之类的达林顿管在增加负荷能力。

计数/定时器

下面所有的测量结果都是在室温 25℃下测量,除非有特别说明。

Timer/Counter 指标	参数				
通道数	2 通道,独立工作				
参考地	DGND				
计数/定时器位数	32Bits				
输入电压范围	0~3.3V				
输入高电平	2.2V~3.3V				
输入低电平	<0.7V				
计数测量	边沿计数				

计数方式	向上计数
时钟精度	10PPM
定时时钟	50MHZ
定时分辨率	20ns

电源供电

下面所有的测量结果都是在室温 25℃下测量,除非有特别说明。

电源技术指标	参数			
供电	USB型 FT8203/82004 以 USB 供电,其余产品需直流供电 DC9~24V(<1A)			
外部直流供电输入接口	DC5.5*2.1mm			
电流	额度工作电流<250mA,请尽量使用我们提供的原厂电源适配器			
保险丝	1A/30V			

USB 或以太网版 FT8203/8204/8206 DAQ 接口

		SCSI	68	\sim		
	$\left(\right)$	-				
AIC	1	68	34		AI8	
AGND		67	33		AI1	
AI9		66	32		AGND	
AI2		65	31		AI10	
AGND		64	30		AI3	
Al11		63	29		AGND	
AI_SENSE0_IN		62	28		Al4	
AI12		61	27		AI_SENSE1_IN	
AI5		60	26		AI13	
AGND		59	25		AI6	
AI14		58	24		AGND	
AI7		57	23		AI15	
AGND		56	22		AO0	
AGND		55	21		AO1	
CTC		54	20		AGND	
CT1		53	19		P0.4	
P0.0		52	18		DGND	-/1
P0.5		51	17		P0.1	
DGND		50	16		P0.6	
P0.2		49	15		DGND	
P0.7		48	14		+5V	/
P0.3		47	13		DGND	
P2.3		46	12		DGND	
P2.2		45	11		P1.0	
DGND	,	44	10		P1.1	
P1.2		43	9		DGND	
P1.3		42	8		+5V	
P1.4		41	7		DGND	
P2.5		40	6		P1.5	
P2.7	T	39	5		P1.6	
P1.7		38	4		DGND	
P2.0		37	3		P2.1	
NC		36	2		P2.4	
DGND		35	1		P2.6	
	$\overline{\ }$					
, , , , , , , , , , , , , , , , , , , ,			_	\sim	1	

Fidas8206 接口

表格 1: 连接器信号

Signal Name	Reference	Direction	Description
AGND			模拟输入地,单端模拟信号输入参考地,差分模拟输入偏置电流返回路径,AGND,DGND 在设备内部已经 短接到一起。模拟输入信号连接方式参考模拟输入信号配置 <u>表格2</u> 。
AI<023>	AGND	Input	模拟输入通道,单端信号通道 Al<015>,信号参考 地为 AGND,Al<1623>为差分信号通道,引脚与 Al<015>复用。

以精准测控赋能智能制造

AOUT<01>	AGND	Output	模拟信号输出通道,单端信号输出,信号参考地为 AGND,电压信号输出。
DGND			数字地,P0.<07>, P1.<07>, P2.<07>, CTR0, CTR1 数字信号参考地。
P0.<07>	DGND	1/0	Port0 双向数字输入输出通道,可以软件配置为输入 或输出,可以按照 Port 设置,也可以按位设置。P0.0, P0.1 有 PFI 功能,可以输出自定义占空比的方波。
P1.<07>	DGND	1/0	Port0 双向数字输入输出通道,可以软件配置为输入 或输出,可以按照 Port 设置,也可以按位设置。
P2.<07>	DGND	1/0	Port0 双向数字输入输出通道,可以软件配置为输入 或输出,可以按照 Port 设置,也可以按位设置。
CTR<01>	DGND	Input	定时计数器输入通道,可以软件配置为定时器或计数 器功能,信号参考地为 DGND。
Al sense0 Al sense1		Input	模拟输入参考信号,在模拟输入为伪差分模式下使用,AI0~7使用AI sense0作为参考,AI8~15使用AI sense1作为参考。

表格 2: 模拟输入信号配置

Fine Tooling

	浮地信号源	共地信号源		
信号类型	 例如: ● 隔离输出的信号源 ● 电池供电设备 ● 隔离电源供电的设备 	例如:● 非隔离输出的信号源● 非隔离电源供电的设备		
差分(DIFF)	Singal source	Singal source		

关于 Windows 驱动安装及其 HWSuit 支持

HardwareSuit 是由方瞳科技技术支持团队免费提供的一款虚拟仪器硬件调试工具。用户可以根据产品序列号,打开 所需要控制与调试的产品,从而进入工作页面。用户可以通过<u>网站下载</u>使用最新版本的 HWSuit 工具和驱动。

Windows 驱动安装:

第一步:下面以 USB DAQ FT8205 为例来演示一下驱动 装相关操作。

先从方瞳 FAE 或者**官网下载 USB 驱动**, 解压后找到对应版 本的驱动。

动安	í	名称		+	新建 ~	~	C)	lõ	<u>A</u>		
立版		win7		名称							
<u></u>		win8		🗋 cyusb3.pdb							
		Win8.1		🗟 cyusb3.sys							
		Win10		FT_cyusb3_INF FT_cyusb3_INF							
										27 aV2	
			P291	3C [1 949]		2022					
cyusb3.pd	lb		20	18/5/8 1	1:05	PDB 文件		916 KB			
Cyusb3.sys		cat	20	18/5/81	1:05	系统文件		73 KB			
FT_cyusb3	INF.	inf	20	21/6/30	22.27	安装信息		18 KB			
a) <u>_</u> ejasos	-	打开(0)				Salact ET	courb3	INE inf. rig	ht.		
		打印(P)				click and	_cyusb5_	install	nt-		
		安装(1)				CIICK and					
		🕻 上传到迅雷云盘									
		🕀 使用 Microsoft Del	fender	扫描							
		添加到压缩文件(A).									
		● 添加到 "FT_cyusb3	INF.z	ip"(T)							
		■ 添加到压缩文件并发	送给C	Q好友							
		其他比缩命令			/						
		317173324(11)									
		上传到百度网盘									
<u>※</u> 自:		· 目初香伤该又件夹									
		通过QQ发送到									
		还原以前的版本(V)									
发送到(N) 剪切(T)					>						
		夏制(C)									
创建快捷方式(S)											
删除(D)											
		重命名(M)									
		/雇性(R)									
	.,										

第二步:以 Win10/x64 USB driver 为例,右键点击 "*FT_cyusb3_INF.inf*",在弹出的窗口选择**安装**。

Tips:关于第二步操作,你也可以通过更新驱动程 序的方式安装。在弹出的窗口中选中刚刚的文件 "FT_cyusb3_INF.inf"。

第三步:安装完成后,就可以在 Windows 的设备管理器中看到正确的 USB 仪器了。

HWSUIT 功能简介

HWSuit V3.5.4.1							
Home	13399-3360-FT202108V996						
FT202108V996	设备参数	DIO控制	AO	AI	Co	unter	PFI
	F	Port0	Port1			Port2	
	P0.0	OUT HI	P1.0 IN		P2.0	IN	0
	P0.1	OUT Lo	P1.1 IN		P2.1	IN	0
	P0.2	OUT Lo	P1.2 IN		P2.2	IN	0
	P0.3	OUT Lo	P1.3 IN		P2.3	IN	0
	P0.4	OUT Lo	P1.4 IN		P2.4	IN	0
	P0.5	OUT Lo	P1.5 IN		P2.5	IN	0
	P0.6	OUT Lo	P1.6 IN		P2.6	IN	0
	P0.7	OUT Lo	P1.7 IN		P2.7	IN	0
				DIC) 操作界	·面	

在驱动安装结束后,可以打开 HWSUIT 调试助手,进行 IO、AI 和 AO 相关操作。

HWSUIT 可以在界面上对 AO 输出的波形进行定义,产生方波、正弦波等周期性信号。HWSUIT 还可以通过函数直 接定义多次谐波分量大小,这一功能对数据处理、实验教学用户非常友好。

HWSUIT 对 AI 接口的操作就更加丰富。可以直接进行 peak-to-peak, THD, SINAD, RMS 分析,还可以利用 FFT 查看 波形的频域情况。

在 HWSUIT 上直接观察时域指标

除了模拟信号之外, HWSUIT 还可以基于 Counter 和 PFI 直接做数字信号相关操作。

HWSuit V3.5.4.1		< l
Home 13399-3360-FT202108V996		
设备参数 DIO控制 AO FT202108V996	Al Counter PFI	
Counter 0	400 7800000	
Counter 1	455.7000000 US	
	口 女 使 C C V c le	
	PositivePulseWidth O NegativePulseWidth	
	计数边沿	
	FallEdge O RaiseEdge	
	测量周期数 50	$(/ \wedge)$
	Stop	
		Y
# 7 0		
基于 Count	er 做数子信亏相天测重	
1006-3119 5 4 4	~///	
Hwsuit V3.5.4.1	- 0	
设备参数 DIO控制 AO	Al Counter PFI	
p0.0		
p0.1	PEI A1始始始信息 PEI ACI会讲信息	
频率(Hz) 1000	■ NY NG WILLING NY NG WILLING NY NG WILLING NY	
占空比(%) 20.00		
Start	Al Trigger AO Trigger	
478		
人 人人人人 基于 P	FI 产生高精度方波	

技术支持 Technical Support

所有产品出厂后默认包含一年免费质保。除此之外,我们有丰富的售前与售后技术支持,请随时联系与您对接的销售渠道,从而获得完善的服务。当然,任何时候,您也可以选择通过网站(www.finetooling.com)或者市场部邮箱 (Marketing@finetooling.com)来联络我们。