

DAQ SilverX 系列, 16Bit, up to 16 AI, 800KS/s, 2 AO, 24 DIO

历史记录

版本	日期	内容
1.0	2023/3/30	首次发布
1.2	2024/4/28	修订技术参数的排版,更便于用户选型,另外加入了驱动安装指导等内容

目录

2
2
3
/ _ \
10
12

产品特性

- 16 通道模拟输入, 16bits 分辨率, 最大采样率 800KS/s
- 可编程模拟输入量程: ±10V, ±5V
- 部分产品 AI 可配置为伪差分输入
- 2通道模拟输出, 16bits 分辨率, 最大采样率为 1.2MS/s
- 24 通道双向数字 IO,可按 Bit/Port 设置为输入输出
- 2通道定时/计数器
- 免费的调试助手软件(HWSUIT)
- 支持 FTStudio、LabVIEW、Visual Studio 等工具进行应用开发

概述

USB DAQ SilverX 系列提供最多 16 通道单端模拟输入、8 通道差分模拟输入、16Bit 采样率、最大 800KS/s、24 位 DIO 等功能,且部分通道间可实现同步采样,可满足许多常见的测量要求。该设备适用于各种工业应用,如实验室自动化、研究和设计验证等。免费的 FineTooling HWSUIT 配套软件提供了基本的测量和分析功能,如 SNR、THD、SINAD 等分析,而方瞳的自动化测试平台 FTStudio 支持所有 USB DAQ SilverX 系列的数据采集卡,方便用户快速使用。

系统支持: windows XP / Win7 / Win10 / Win11 / Linux

软件兼容: LabVIEW / Visual Studio / FTStudio 等

SilverX 系列采集卡对照表:

系列	通信接口	AI 通道数	AI 分辨率	AI 采样率	AO 通道	AO 分辨率	AO 量程	DIO
FT8203	USB	16	16 bits	800KS/S	2	16 bits	±10V	24
FT8204	USB	8	16 bits	800KS/S	2	16 bits	±10V	24
FT8205	USB	16	16 bits	800KS/S	2	16 bits	±10V	24
FT8206	USB,GbE,FIDAS	16	16 bits	800KS/S	2	16 bits	±10V	24

模拟输入特性

下面所有的测量结果都是在室温 25℃下测量, 除非有特别说明。

模拟输入指标	FT8203	FT8204	FT8205	FT8206		
模拟输入通道数	16 通道单端	8 通道差分	8 通道差分/	716 通道单端		
采样率	AI0-16 共享 800KS/s	AI0-7 共享 800KS/s	Al0~7, 8~15, 16 共享 800KS/s	~23 组内部独立		
分辨率	16 bits					
DNL	±1LSB			17		
INL	±1LSB					
AI SENSE	无	无	无	AI SENSE 0 / 1		
Input Signal 1KHz, DIFF; 800KSPS, 8K Sam	iples:		·			
SNR (20Vpp)	>92dB	/				
SINAD (2Vpp)	>93dB					
THD (2Vpp)	<0.002%	13/	1			
定时分辨率	50ns					
输入耦合	DC	KVZ				
輸入量程	±10V, ±5V					
输入阻抗	X					
AI+ to AIGND	> 10GΩ 6.4pF					
AI- to AIGND	> 10GΩ 6.4pF					
输入偏置电流	±20pA					
采样点缓存 FIFO 大小	8192 samples					
多通道扫描缓存大小	8192 samples					

模拟输出特性

下面所有的测量结果都是在室温 25℃下测量,除非有特别说明。

模拟输出指标	参数
通道数	2 通道,单端输出
ADC 分辨率	16 bits
SNR(Signal : 20Vpp, 1KHz)	>100dB
SINAD(Signal : 10Vpp, 1KHz)	>83dB
THD(Signal : 10Vpp, 1KHz)	<0.008%

DNL	±1LSB
数据更新速率	1.2MS/s/CH
定时分辨率	50ns
输出耦合	DC
输出量程	±10V
输出阻抗	0.2Ω
输入偏置电流	±20pA
AO 输出数据缓存	1024 samples
压摆率	20V/uS
最大驱动电流	10mA

数字 IO/PFI

下面所有的测量结果都是在室温 25℃下测量,除非有特别说明。

数字 IO/PFI 指标	参数		
通道数	24Bits DIO, 2Bits PFI(P0.0/P0.1)		
参考地	DGND		
方向控制	每个位可以单独设置为输入输出		
输入电压范围	0~3.3V		
输入高电平	2.2V~3.3V		
输入低电平	<0.7V		
输出高电平	>3.2V		
输出低电平	<0.1V		
最大驱动电流	4mA		
上电初始状态	输入		
定时器分辨率	20ns		
PFI	可以输出占空比可调节的方波		

Tips: 数字 IO 直接驱动感性负载注意事项

当感性负载连接至输出线时,由于感性负载(例如较大继电器的驱动线圈)会存储一定的能量,在打开或闭合的瞬间可能产生一个较大的反向电动势,该反电动势有可能会损坏或者减少控制电路的寿命。为了避免这种情况,可以采用反激式二极管。下面是一个使用反激式二极管保护感性负载的一个范例。

图 5-1 限制感性负载的反电动势

Tips: 提升数字 IO 的电流驱动能力

为了方便用户进行灵活进行工程设计,DAQ的数字IO可以被任意设置为输入/输出。因此,为了不影响数字输入特性,我们尽可能减少了外围的驱动电路。在这种情况,当某些特定的项目应用,用户可能会需要这些数字IO作为特定的输出,具有较强的对外电流驱动能力,这种情况,用户可以在外围的接口板上增加响应的驱动电路。例如,用户可以通过增加三极管或者MOSFET来增加驱动能力,也可以直接通过如ULN2803之类的达林顿管在增加负荷能力。

图 5-2 使用外围电路提升 Ⅳ 输出驱动电流

计数/定时器

下面所有的测量结果都是在室温 25℃下测量、除非有特别说明。

Timer/Counter 指标	参数			
通道数	2 通道,独立工作			
参考地	DGND			
计数/定时器位数	32Bits			
输入电压范围	0~3.3V			
输入高电平	2.2V~3.3V			
输入低电平	<0.7V			
计数测量	边沿计数			

计数方式	向上计数
时钟精度	10PPM
定时时钟	50MHZ
定时分辨率	20ns

电源供电

下面所有的测量结果都是在室温 25℃下测量,除非有特别说明。

电源技术指标	参数
供电	USB 型 FT8203/82004 以 USB 供电,其余产品需直流供电 DC9~24V(<1A)
外部直流供电输入接口	DC5.5*2.1mm
电流	额度工作电流<250mA,请尽量使用我们提供的原厂电源适配器
保险丝	1A/30V

接口定义

USB 或以太网版 FT8203/8204/8206 DAQ 接口

SCSI68							
410	A10						
ACAID	68	34		AI8			
AGND	67	33		ACND			
AI9	66	32		AGND			
AI2	65	31		Al10			
AGND	64			AI3			
Al11	63	29		AGND			
AI_SENSEO_IN	62	28		AI4			
Al12	61	27		AI_SENSE1_IN			
AI5	60	26		Al13			
AGND	59	25		Al6			
Al14	58	24		AGND			
AI7	57	23		Al15			
AGND	56	22		AO0			
AGND	55	21		AO1			
CT0	54	20		AGND			
CT1	53	19		P0.4			
P0.0	52	18		DGND			
P0.5	51	17		P0.1			
DGND	50	16		P0.6			
P0.2	49	15		DGND			
P0.7	48	14		+5V			
P0.3	47	13		DGND			
P2.3	46	12		DGND			
P2.2	45	11		P1.0			
DGND	44	10		P1.1			
P1.2	43	9		DGND			
P1.3	42	8		+5V			
P1.4	41	7		DGND			
P2.5	40	6		P1.5			
P2.7	39	5		P1.6			
P1.7	38	4		DGND			
P2.0	37	3		P2.1			
NC	36	2		P2.4			
DGND	35	1		P2.6			
		_					

Fidas8206 接口

表格 1: 连接器信号

Signal Name	Reference	Direction	Description
AGND			模拟输入地,单端模拟信号输入参考地,差分模拟输入偏置电流返回路径, AGND, DGND 在设备内部已经短接到一起。模拟输入信号连接方式参考模拟输入信号配置表格 2。
AI<023>	AGND	Input	模拟输入通道,单端信号通道 AI<015>,信号参考 地为 AGND,AI<1623>为差分信号通道,引脚与 AI<015>复用。

AOUT<01>	AGND	Output	模拟信号输出通道,单端信号输出,信号参考地为 AGND,电压信号输出。
DGND			数字地,P0.<07>, P1.<07>, P2.<07>, CTR0, CTR1 数字信号参考地。
P0.<07>	DGND	1/0	Port0 双向数字输入输出通道,可以软件配置为输入或输出,可以按照 Port 设置,也可以按位设置。P0.0, P0.1 有 PFI 功能,可以输出自定义占空比的方波。
P1.<07>	DGND	1/0	Port0 双向数字输入输出通道,可以软件配置为输入或输出,可以按照 Port 设置,也可以按位设置。
P2.<07>	DGND	1/0	Port0 双向数字输入输出通道,可以软件配置为输入或输出,可以按照 Port 设置,也可以按位设置。
CTR<01>	DGND	Input	定时计数器输入通道,可以软件配置为定时器或计数器功能,信号参考地为 DGND。
Al sense0 Al sense1		Input	模拟输入参考信号,在模拟输入为伪差分模式下使用,AI0~7 使用 AI sense0 作为参考,AI8~15 使用 AI sense1 作为参考。

表格 2: 模拟输入信号配置

	浮地信号源	共地信号源
信号类型	例如: ■ 隔离输出的信号源 ■ 电池供电设备 ■ 隔离电源供电的设备	例如: ● 非隔离输出的信号源 ● 非隔离电源供电的设备
差分(DIFF)	Singal source + AGND	Singal source + AGND

关于 Windows 驱动安装及其 HWSuit 支持

HardwareSuit 是由方瞳科技技术支持团队免费提供的一款虚拟仪器硬件调试工具。用户可以根据产品序列号,打开所需要控制与调试的产品,从而进入工作页面。用户可以通过网站下载使用最新版本的 HWSuit 工具和驱动。

图 7 HWSuit 软件界面

916 KB

73 KB

18 KB

Windows 驱动安装:

第一步: 下面以 USB DAQ FT8205 为例来演示一下驱动安

先从方瞳 FAE 或者**官网下载 USB 驱动**,解压后找到对应版 本的驱动。

第二步: 以 Win10/x64 USB driver 为例, 右键点击 "FT_cyusb3_INF.inf", 在弹出的窗口选择安装。

Tips: 关于第二步操作,你也可以通过更新驱动程 序的方式安装。在弹出的窗口中选中刚刚的文件 "FT_cyusb3_INF.inf"。

第三步: 安装完成后,就可以在 Windows 的设备管理器中看到正确的 USB 仪器了。

HWSUIT 功能简介

在驱动安装结束后,可以打开 HWSUIT 调试助手,进行 IO、AI 和 AO 相关操作。

DIO 操作界面

HWSUIT 可以在界面上对 AO 输出的波形进行定义,产生方波、正弦波等周期性信号。HWSUIT 还可以通过函数直接定义多次谐波分量大小,这一功能对数据处理、实验教学用户非常友好。

AO 操作界面

HWSUIT 对 AI 接口的操作就更加丰富。可以直接进行 peak-to-peak, THD, SINAD, RMS 分析,还可以利用 FFT 查看波形的频域情况。

在 HWSUIT 上直接观察时域指标

基于 HWSUIT 的 FFT 观察信号频域情况

除了模拟信号之外,HWSUIT 还可以基于 Counter 和 PFI 直接做数字信号相关操作。

基于 Counter 做数字信号相关测量

基于 PFI 产生高精度方波

技术支持 Technical Support

所有产品出厂后默认包含一年免费质保。除此之外,我们有丰富的售前与售后技术支持,请随时联系与您对接的销售渠道,从而获得完善的服务。当然,任何时候,您也可以选择通过网站(www.finetooling.com)或者市场部邮箱(Marketing@finetooling.com)来联络我们。